The standard-deviation calculator below calculates the standard deviation for a sample or a population.
Standard Deviation Calculator
Solution:
1. Start by writing the computational formula for the standard deviation of a sample: $$ {s}= \sqrt{\frac{{\sum}{x^2} - \frac{({\sum}{x})^2}{n}}{n-1}}$$
2. Create a table of 2 columns and 7 rows. There will be a header row and a row for each data value. The header row should be labeled with ${x}$ and $ x^2$. Enter the data values in the ${x}$ column, with each data value in its own row. In the second column, put the square of each of the data values, ${x^2}$.
$x$ | $x^2$ |
208 | 43264 |
240 | 57600 |
277 | 76729 |
140 | 19600 |
158 | 24964 |
114 | 12996 |
3. Find the sum of all the values in the first column, ${\sum}{x}$.
$$ \sum{x} = 1137 $$4. Square the answer from step 3, then divide that number by the size of the sample.
$$ \frac{({\sum}{x})^2}{n} = \frac{1292769}{6} = 215461.5 $$5. Find the sum of all the values in the second column, ${\sum}{x^2}$.
$$ {\sum}{x^2} = 235153 $$6. Subtract the answer in step 4 from the answer in step 5.
$$ {\sum}{x^2} - \frac{({\sum}{x})^2}{n} = 235153 - 215461.5 = 19691.5 $$7. Divide the answer in step 6 by n - 1, one less than the size of the sample. This answer is the variance of the sample. $$ {s^2}= \frac{{\sum}{x^2} - \frac{({\sum}{x})^2}{n}}{n-1} = \frac{ 19691.5 }{5} = 3938.3$$
8. Take the square root of the answer found in step 7 above. This number is the standard deviation of the sample. It is symbolized by ${s}$ . Here, we round the standard deviation to at most 4 decimal places.
$$ {s} = \sqrt{3938.3} = 62.7559$$