The standard-deviation calculator below calculates the standard deviation for a sample or a population.
Standard Deviation Calculator
Solution:
1. Start by writing the computational formula for the standard deviation of a sample: $$ {s}= \sqrt{\frac{{\sum}{x^2} - \frac{({\sum}{x})^2}{n}}{n-1}}$$
2. Create a table of 2 columns and 10 rows. There will be a header row and a row for each data value. The header row should be labeled with ${x}$ and $ x^2$. Enter the data values in the ${x}$ column, with each data value in its own row. In the second column, put the square of each of the data values, ${x^2}$.
$x$ | $x^2$ |
297 | 88209 |
211 | 44521 |
265 | 70225 |
130 | 16900 |
165 | 27225 |
123 | 15129 |
116 | 13456 |
288 | 82944 |
270 | 72900 |
3. Find the sum of all the values in the first column, ${\sum}{x}$.
$$ \sum{x} = 1865 $$4. Square the answer from step 3, then divide that number by the size of the sample.
$$ \frac{({\sum}{x})^2}{n} = \frac{3478225}{9} = 386469.44444444 $$5. Find the sum of all the values in the second column, ${\sum}{x^2}$.
$$ {\sum}{x^2} = 431509 $$6. Subtract the answer in step 4 from the answer in step 5.
$$ {\sum}{x^2} - \frac{({\sum}{x})^2}{n} = 431509 - 386469.44444444 = 45039.555555556 $$7. Divide the answer in step 6 by n - 1, one less than the size of the sample. This answer is the variance of the sample. $$ {s^2}= \frac{{\sum}{x^2} - \frac{({\sum}{x})^2}{n}}{n-1} = \frac{ 45039.555555556 }{8} = 5629.9444444444$$
8. Take the square root of the answer found in step 7 above. This number is the standard deviation of the sample. It is symbolized by ${s}$ . Here, we round the standard deviation to at most 4 decimal places.
$$ {s} = \sqrt{5629.9444444444} = 75.033$$