Standard Deviation Calculator


Population
Sample

Both give the same result, but the computational formula is simpler to calculate step-by-step.
Standard
Computational

Solution:

1. Start by writing the computational formula for the standard deviation of a sample: $$ {s}= \sqrt{\frac{{\sum}{x^2} - \frac{({\sum}{x})^2}{n}}{n-1}}$$

2. Create a table of 2 columns and 12 rows. There will be a header row and a row for each data value. The header row should be labeled with ${x}$ and $ x^2$. Enter the data values in the ${x}$ column, with each data value in its own row. In the second column, put the square of each of the data values, ${x^2}$.

$x$

$x^2$

14320449
17129241
27776729
10210404
12114641
10811664
14420736
22751529
21244944
19839204
26670756

3. Find the sum of all the values in the first column, ${\sum}{x}$.

$$ \sum{x} = 1969 $$

4. Square the answer from step 3, then divide that number by the size of the sample.

$$ \frac{({\sum}{x})^2}{n} = \frac{3876961}{11} = 352451 $$

5. Find the sum of all the values in the second column, ${\sum}{x^2}$.

$$ {\sum}{x^2} = 390297 $$

6. Subtract the answer in step 4 from the answer in step 5.

$$ {\sum}{x^2} - \frac{({\sum}{x})^2}{n} = 390297 - 352451 = 37846 $$

7. Divide the answer in step 6 by n - 1, one less than the size of the sample. This answer is the variance of the sample. $$ {s^2}= \frac{{\sum}{x^2} - \frac{({\sum}{x})^2}{n}}{n-1} = \frac{ 37846 }{10} = 3784.6$$

8. Take the square root of the answer found in step 7 above. This number is the standard deviation of the sample. It is symbolized by ${s}$ . Here, we round the standard deviation to at most 4 decimal places.

$$ {s} = \sqrt{3784.6} = 61.5191$$

The standard-deviation calculator below calculates the standard deviation for a sample or a population.